

EQUIPMENT PROFILE
38,000,000 BTU Frac Water Heater Unit

Frac Water Heater

Our 38,000,000 BTU frac water heaters are dual fired - diesel or natural gas - trailer mounted, fully enclosed units. These units are capable of heating water up to $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ in a single pass at a flow rate of 500GPM, with a maximum flow rate of 850GPM at 50 psi (inlet pressure). The dual burners included on each unit meet all NFPA combustion system requirements and are equipped with safety shutdowns. Burners are digitally controlled to ensure adequate water temperatures are being achieved.

Frac Water Heater Footprint

Length	Width	Height	Weight
13.7 m	2.6 m	3.96 m $\left(45^{\prime \prime}\right)$	$\left(8^{\prime} 6^{\prime \prime}\right)$

Visit our website for more Case Studies and Insights at:
fourquest.com/case-studies
fourquest.com/insights

Heat Exchanger

> 2" - SA106 GR B, SCH 40 pipe
> Multi core, multi pass, low pressure design
> Inlet and outlet manifolds within burner chamber
> 6×5 hydraulic drive centrifugal water charge pump
> Multiple 4" suction and discharge connections at rear of trailer

Fuel Tank

> 10,220 litre (2700 gallon) aluminum fuel tank
> Top fill and lower pressure fill connections
> Top manway, pressure relief valve, level gauge
> Air operated vent valve, air operated fuel supply valve to burner
> Manual fuel supply valve to deck engine
> Heated and insulated tank bottom shell

Hydraulic System

> 1135.6 litre (300 gallon) hydraulic tank
> 4 Pump with 2 oil coolers, valves and controls
> System operates, water charge pump, combustion blower, fuel pump, air compressor

Suncor Energy Centre, West Tower \#5100, 150 6th Avenue, S.W.
Calgary, AB T2P 3Y7
Office: +1 403-538-2140

FORT MCMURRAY, AB
136 Macmillan Road
Fort McMurray, AB T9H 5L4 Office: +1 780-750-2829

FORT ST. JOHN, BC Graywest Office Centre Ltd. 1070497 Avenue Fort St. John, BC V1 J 6L7 Phone: +1 250-785-1706

Connect with us:
f in $y^{\prime} \mathrm{g}^{+}$
fourquest.com

